imprimer la page

-A +A

Systems Cell Biology of Cell polarity and Cell division

Keywords : microfabrication, cell polarity, cell migration, cell division, cytoskeleton, mechano-transduction, micropatterning, microfluidics, microchannels

Group leader : Matthieu Piel

Our team studies cell polarization, a process which involves a reorganization of the cell cytoskeleton and movement of cellular organelles, usually triggered by external cues. We are particularly interested in cell polarity in the context of cell migration and cell division. We develop and use innovative tools based on nano and micro-fabrication techniques, to control and modulate the main physical and chemical parameters of the cell micro-environment. These tools are coupled with high quality quantitative microscopy, and used alongside molecular and cell biology techniques, to obtain a quantitative description of the cell behavior. As well as highlighting new basic concepts about cell polarity, our multidisciplinary approach leads to the development of novel tools with potential applications in biomedical research.

Figure 1: Figure 1 : Our most recent innovation in cell micropatterning allows dynamic control of cell spreading (B), cell shape (D, E) and cell co-culture (C), using simple click-chemistry (A), see Van Dongen et al., Advanced MaterialsFigure 1: Figure 1 : Our most recent innovation in cell micropatterning allows dynamic control of cell spreading (B), cell shape (D, E) and cell co-culture (C), using simple click-chemistry (A), see Van Dongen et al., Advanced Materials


We have demonstrated that micro-patterns of extra-cellular matrix molecules are able to determine the polarity and division axis of cultured cells (Théry, Nat Cell Biol 2005, PNAS 2006, Jiang PNAS 2006). This discovery was patented and licensed to a start-up company (CYTOO, created in 2008). We also discovered a new mechanism of cell morphogenesis (Terenna, Curr Biol 2008), a new pathway coordinating cell migration and antigen uptake in dendritic cells (Faure-André, Science 2008), and demonstrated a link between external forces and mitotic spindle orientation (Fink, Nat Cell Biol 2011). Our expertise in using a combination of microfluidics and live-cell microscopy lead to several fruitful international collaborations.


Figure 2: Figure 2: (A) One of our recent discovery: external forces can orient cell division (see Fink et al. Nat. Cell Biol, 2011). (B) Rational of our current project on cells under confinement. (C) One of our confinement tools, here to study cell squeezing through a narrow gap (see Heuze et al. Meth. Mol Biol. 2010)Figure 2: Figure 2: (A) One of our recent discovery: external forces can orient cell division (see Fink et al. Nat. Cell Biol, 2011). (B) Rational of our current project on cells under confinement. (C) One of our confinement tools, here to study cell squeezing through a narrow gap (see Heuze et al. Meth. Mol Biol. 2010)

The focus of our current research is how cells proliferate and migrate when space is limited. We want to understand how cells (immune cells and cancer cells) can produce efficient motion under confinement and squeeze through small holes. We also want to understand how physical constrains affect dividing cells.
Our current project on cell proliferation under external constrains has been awarded an ERC Consolidator grant in 2012.


Our team is part of the Institut Pierre-Gilles de Gennes pour la microfluidique. Follow this link to access our website on the IPGG.

See all publications


M. Piel is author of 74 publications (H factor 34). He holds three patents, and is a co-founder of the CYTOO Company. He started a club ‘micro-fabrication for cell biology’ at the Center for Interdisciplinary Research in Institut Cochin and is one of the founding teams of Institut Pierre Gille de Gennes for Microfluidics. He also teaches cell biology and biophysics in several master courses in Paris. He has been invited to 40 international meetings and 50 seminars in the last 5 years. He was awaded the Bronze medal of CNRS in 2012.




Adhesive control of internal cell organisation is an efficient and low-cost method that allows screening of genes or compounds activities on cell functions encompassing polarity, motility and division as well as internal compartmentalisation and transport.

Bornens M, Thery M and Piel M : Methods and Device for Adhesive Control of Internal Cell Organization (ACICO). Mars 2005 (PCT: WO026313), mai 2007 (Europe: 1664266), février 2007 (USA: 004283-A1), mars 2007 (Japon: 504818).

Le Berre M, Piel M, Liu YJ : Device for guiding cell migration and methods of guiding cell migration implementing such a device

Key publications

  • Year of publication : 2016

  • Dendritic cell (DC) migration in peripheral tissues serves two main functions: antigen sampling by immature DCs, and chemokine-guided migration towards lymphatic vessels (LVs) on maturation. These migratory events determine the efficiency of the adaptive immune response. Their regulation by the core cell locomotion machinery has not been determined. Here, we show that the migration of immature DCs depends on two main actin pools: a RhoA-mDia1-dependent actin pool located at their rear, which facilitates forward locomotion; and a Cdc42-Arp2/3-dependent actin pool present at their front, which limits migration but promotes antigen capture. Following TLR4-MyD88-induced maturation, Arp2/3-dependent actin enrichment at the cell front is markedly reduced. Consequently, mature DCs switch to a faster and more persistent mDia1-dependent locomotion mode that facilitates chemotactic migration to LVs and lymph nodes. Thus, the differential use of actin-nucleating machineries optimizes the migration of immature and mature DCs according to their specific function.

  • Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.

  • Year of publication : 2015

  • The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells.

  • Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.

  • Confined migration plays a fundamental role during several biological phenomena such as embryogenesis, immunity and tumorogenesis. Here, we propose a two-dimensional mechanical model to simulate the migration of a HeLa cell through a micro-channel. As in our previous works, the cell is modelled as a continuum and a standard Maxwell model is used to describe the mechanical behaviour of both the cytoplasm (including active strains) and the nucleus. The cell cyclically protrudes and contracts and develops viscous forces to adhere to the substrate. The micro-channel is represented by two rigid walls, and it exerts an additional viscous force on the cell boundaries. We test four channels whose dimensions in terms of width are i) larger than the cell diameter, ii) sub-cellular, ii) sub-nuclear and iv) much smaller than the nucleus diameter. The main objective of the work is to assess the necessary conditions for the cell to enter into the channel and migrate through it. Therefore, we evaluate both the evolution of the cell morphology and the cell-channel and cell-substrate surface forces, and we show that there exists a link between the two, which is the essential parameter determining whether the cell is permeative, invasive or penetrating.

  • The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration-one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility.

  • Cells are constantly exposed to agents that can trigger the perforation of their plasma membrane. This damage occurs naturally, and the frequency and intensity depends on how much cells are exposed to damaging threats. The following protocol is a simple and powerful method to damage the plasma membrane using laser ablation. It allows the induction of a single and localized wound at the plasma membrane of cultured cells, which can be followed with fast time-lapse imaging. The first part of the protocol describes simple cell culture techniques and the material ideal to make the experiments. A second part of the protocol gives advice about the procedures to make effective wounds in cells while ensuring a good survival rate. We also propose different ways to follow the opening and closure of the plasma membrane. Finally, we describe the procedure to efficiently analyze the data acquired after single cell photodamage to characterize the wounding process.

  • The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space.

  • Year of publication : 2014

  • Plasma membrane damage can be triggered by numerous phenomena, and efficient repair is essential for cell survival. Endocytosis, membrane patching, or extracellular budding can be used for plasma membrane repair. We found that endosomal sorting complex required for transport (ESCRT), involved previously in membrane budding and fission, plays a critical role in plasma membrane repair. ESCRT proteins were recruited within seconds to plasma membrane wounds. Quantitative analysis of wound closure kinetics coupled to mathematical modeling suggested that ESCRTs are involved in the repair of small wounds. Real-time imaging and correlative scanning electron microscopy (SEM) identified extracellular buds and shedding at the site of ESCRT recruitment. Thus, the repair of certain wounds is ensured by ESCRT-mediated extracellular shedding of wounded portions.

  • Dividing cells almost always adopt a spherical shape. This is true of most eukaryotic cells lacking a rigid cell wall and is observed in tissue culture and single-celled organisms, as well as in cells dividing inside tissues. While the mechanisms underlying this shape change are now well described, the functional importance of the spherical mitotic cell for the success of cell division has been thus far scarcely addressed. Here we discuss how mitotic rounding contributes to spindle assembly and positioning, as well as the potential consequences of abnormal mitotic cell shape and size on chromosome segregation, tissue growth, and cancer.

  • The method described here allows the study of cell migration under confinement in one dimension. It is based on the use of microfabricated channels, which impose a polarized phenotype to cells by physical constraints. Once inside channels, cells have only two possibilities: move forward or backward. This simplified migration in which directionality is restricted facilitates the automatic tracking of cells and the extraction of quantitative parameters to describe cell movement. These parameters include cell velocity, changes in direction, and pauses during motion. Microchannels are also compatible with the use of fluorescent markers and are therefore suitable to study localization of intracellular organelles and structures during cell migration at high resolution. Finally, the surface of the channels can be functionalized with different substrates, allowing the control of the adhesive properties of the channels or the study of haptotaxis. In summary, the system here described is intended to analyze the migration of large cell numbers in conditions in which both the geometry and the biochemical nature of the environment are controlled, facilitating the normalization and reproducibility of independent experiments.

  • Piel M, Théry M (2014) Micropatterning. Preface.

    Methods in cell biology, 119: xvii
  • Carpi N, Piel M (2014) Stretching micropatterned cells on a PDMS membrane.

    Journal of visualized experiments : JoVE, (83): e51193

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  • Protocols described in this chapter relate to a method to dynamically confine cells in two dimensions with various microenvironments. It can be used to impose on cells a given height, with an accuracy of less than 100 nm on large surfaces (cm(2)). The method is based on the gentle application of a modified glass coverslip onto a standard cell culture. Depending on the preparation, this confinement slide can impose on the cells a given geometry but also an environment of controlled stiffness, controlled adhesion, or a more complex environment. An advantage is that the method is compatible with most optical microscopy technologies and molecular biology protocols allowing advanced analysis of confined cells. In this chapter, we first explain the principle and issues of using these slides to confine cells in a controlled geometry and describe their fabrication. Finally, we discuss how the nature of the confinement slide can vary and provide an alternative method to confine cells with gels of controlled rigidity.

  • Year of publication : 2013

  • In the absence of environmental cues, a migrating cell performs an isotropic random motion. Recently, the breaking of this isotropy has been observed when cells move in the presence of asymmetric adhesive patterns. However, up to now the mechanisms at work to direct cell migration in such environments remain unknown. Here, we show that a nonadhesive surface with asymmetric microgeometry consisting of dense arrays of tilted micropillars can direct cell motion. Our analysis reveals that most features of cell trajectories, including the bias, can be reproduced by a simple model of active Brownian particle in a ratchet potential, which we suggest originates from a generic elastic interaction of the cell body with the environment. The observed guiding effect, independent of adhesion, is therefore robust and could be used to direct cell migration both in vitro and in vivo.

  • Dendritic cells (DCs) constitute a complex cell population that resides in both peripheral tissues and lymphoid organs. Their major function in tissues is to patrol their environment in search of danger-associated antigens to transport to lymph nodes and present to T lymphocytes. This process constitutes the first step of the adaptive immune response and relies on specific DC properties, including a high endocytic capacity as well as efficient motility in confined three-dimensional environments. Although cell motility has been widely studied, little is known on how the geometric characteristics of the environment influence DC migration and function. In this review, we give an overview of the basic physical principles and molecular mechanisms that control DC migration under confinement and discuss how such mechanisms impact the environment-patrolling capacity of DCs.

  • Accurate animal cell division requires precise coordination of changes in the structure of the microtubule-based spindle and the actin-based cell cortex. Here, we use a series of perturbation experiments to dissect the relative roles of actin, cortical mechanics, and cell shape in spindle formation. We find that, whereas the actin cortex is largely dispensable for rounding and timely mitotic progression in isolated cells, it is needed to drive rounding to enable unperturbed spindle morphogenesis under conditions of confinement. Using different methods to limit mitotic cell height, we show that a failure to round up causes defects in spindle assembly, pole splitting, and a delay in mitotic progression. These defects can be rescued by increasing microtubule lengths and therefore appear to be a direct consequence of the limited reach of mitotic centrosome-nucleated microtubules. These findings help to explain why most animal cells round up as they enter mitosis.

  • The last step of cell division, cytokinesis, produces two daughter cells that remain connected by an intercellular bridge. This state often represents the longest stage of the division process. Severing the bridge (abscission) requires a well-described series of molecular events, but the trigger for abscission remains unknown. We found that pulling forces exerted by daughter cells on the intercellular bridge appear to regulate abscission. Counterintuitively, these forces prolonged connection, whereas a release of tension induced abscission. Tension release triggered the assembly of ESCRT-III (endosomal sorting complex required for transport-III), which was followed by membrane fission. This mechanism may allow daughter cells to remain connected until they have settled in their final locations, a process potentially important for tissue organization and morphogenesis.

  • There's an APP for that: cell-repellent APP (azido-[polylysine-g-PEG]) is used to create substrates for spatially controlled dynamic cell adhesion. The simple addition of a functional peptide to the culture medium rapidly triggers cell adhesion. This highly accessible yet powerful technique allows diverse applications, demonstrated through tissue motility assays, patterned coculturing and triggered cell shape change.

  • Spindle orientation plays a pivotal role in tissue morphogenesis. An asymmetric anthrax receptor cap is revealed to promote activation of a formin to orient the spindle along the planar cell polarity (PCP) axis in zebrafish dorsal epiblast cells.

  • Individual cells in their native physiological states face a dynamic multi-factorial environment. This is true of both single-celled and multi-cellular organisms. A key challenge in cell biology is the design of experimental methods and specific assays to disentangle the contribution of each of the parameters governing cell behavior. After decades of studying cells cultured in Petri dishes or on glass coverslips, researchers can now benefit from a range of recent technological developments that allow them to study cells in a variety of contexts, with different levels of complexity and control over a range of environmental parameters. These technologies include new types of microscopy for detailed imaging of large cell aggregates or even whole tissues, and the development of cell culture substrates, such as 3D matrices. Here we will review the contribution of a third type of tool, collectively known as microfabricated tools. Derived from techniques originally developed for microelectronics, these tools range in size from hundreds of microns to hundreds of nanometers.

  • Year of publication : 2012

  • The quest to understand how the mechanical and geometrical environment of cells impacts their behavior and fate has been a major force driving the recent development of new technologies in cell biology research. Despite rapid advances in this field, many challenges remain in order to bridge the gap between the classical and simple cell culture plate and the biological reality of actual tissue. In tissues, cells have their physical space constrained by neighboring cells and the extracellular matrix. Here, we propose a simple and versatile device to precisely and dynamically control this confinement parameter in cultured cells. We show that there is a precise threshold deformation above which the nuclear lamina breaks and reconstructs, whereas nuclear volume changes. We also show that different nuclear deformations correlate with the expression of specific sets of genes, including nuclear factors and classical mechanotransduction pathways. This versatile device thus enables the precise control of cell and nuclear deformation by confinement and the correlative study of the associated molecular events.

  • Predicting cellular behavior is a major challenge in cell and developmental biology. Since the late nineteenth century, empirical rules have been formulated to predict the position and orientation of mitotic cleavage planes in plant and animal cells. Here, we review the history of division plane orientation rules and discuss recent experimental and theoretical studies that refine these rules and provide mechanistic insights into how division can be predicted. We describe why some of these rules may better apply to certain cell types and developmental contexts and discuss how they could be integrated in the future to allow the prediction of division positioning in tissues.

  • Year of publication : 2011

  • We present a model of cell motility generated by actomyosin contraction of the cell cortex. We identify, analytically, dynamical instabilities of the cortex and show that they yield steady-state cortical flows, which, in turn, can induce cell migration in three-dimensional environments. This mechanism relies on the regulation of contractility by myosin, whose transport is explicitly taken into account in the model. Theoretical predictions are compared to experimental data of tumor cells migrating in three-dimensional matrigel and suggest that this mechanism could be a general mode of cell migration in three-dimensional environments.

  • We describe a simple and robust method for high-throughput surface patterning of deformable substrates such as silicone rubber films covered with a thin layer of protein and cell antifouling hydrogel (PLL-g-PEG). The irradiation with deep UV (<200 nm) of PLL-g-PEG-coated rubber substrates through a synthetic quartz photomask created micropatterns over a large area of the substrate. Incubation with proteins resulted in stable patterns with high feature resolution. RPE1 cells seeded on fibronectin patterns were constrained for days even after stretching. We also propose the crossbow feature as an interesting example allowing the stretching of normalized stress fibers.

  • The response of cells to forces is essential for tissue morphogenesis and homeostasis. This response has been extensively investigated in interphase cells, but it remains unclear how forces affect dividing cells. We used a combination of micro-manipulation tools on human dividing cells to address the role of physical parameters of the micro-environment in controlling the cell division axis, a key element of tissue morphogenesis. We found that forces applied on the cell body direct spindle orientation during mitosis. We further show that external constraints induce a polarization of dynamic subcortical actin structures that correlate with spindle movements. We propose that cells divide according to cues provided by their mechanical micro-environment, aligning daughter cells with the external force field.

  • This chapter describes a method to study cells migrating in micro-channels, a confining environment of well-defined geometry. This assay is a complement to more complex 3D migration systems and provides several advantages even if it does not recapitulate the full complexity of 3D migration. Important parameters such as degree of adhesion, degree of confinement, mechanical properties, and geometry can be varied independently of each other. The device is fully compatible with almost any type of light microscopy and the simple geometry makes automated analysis very easy to perform, which allows screening strategy. The chapters is divided into five parts describing the design of different types of migration chambers, the fabrication of a mold by photolithography, the assembly of the chamber, the loading of cells, and finally the imaging on live or fixed cells.

  • Year of publication : 2010

  • The described protocol is a simple method to make protein micropatterns with a micron size resolution. It can be applied to control cell shape and adhesive geometry, and also for any other assay requiring protein patterning. It is based on the use of a photomask with microfeatures to locally irradiate with deep UV light (below 200 nm) an antifouling substrate, making it locally adsorbing for proteins. The entire process can be subdivided into three main parts. The first part describes the design of a photomask. The second part describes the passivation (antifouling treatment) of the substrate, its irradiation, and the binding of proteins. The entire process can be completed in a couple of hours. It requires no expensive equipment and can be performed in any biology lab. The last part describes cell deposition on the micropatterned substrate. We also provide a discussion with pitfalls and alternative techniques adapted to various substrates, including silicone elastomers.

  • Year of publication : 2009

  • The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mechanisms that regulate cell shape and cell division in fission yeast.

  • We present a simple and environmentally friendly process for cell patterning on glass covered with an ultrathin layer of poly-l-lysine-grafted-polyethylene glycol (PLL-g-PEG) by exposure to deep UV light. The patterned substrates are stable for months in the lab atmosphere before incubation with proteins. Incubation with proteins resulted in well defined patterns, with high feature resolution. RPE-1 cells seeded on fibronectin/fibrinogen-Alexa 488 patterns were constrained for days on the deep UV exposed regions. Finally, large glass plates were patterned with high homogeneity enabling the assembly of micro-patterned microplates in 96-well format.

  • This protocol describes a simple, fast, and efficient method for making adhesive micropatterns that can be used to control individual cell shape and adhesion patterns. It is based on the use of an elastomeric stamp containing microfeatures to print proteins on the substrate of choice. The process can be subdivided into three parts. First, a silicon master is fabricated, which contains the microfeatures of interest. Once fabricated, the master can be used multiple times to make stamps. Masters with customized patterns can also be purchased commercially. Second, a polydimethylsiloxane (PDMS) stamp is fabricated. Unlike fabrication of the master, this step can be performed without specialized equipment. The PDMS stamp is inked with extracellular matrix proteins. Proteins are printed on a substrate (e.g., a tissue culture polystyrene dish or a glass coverslip covered with a thin layer of polystyrene). The nonprinted areas are back-filled with poly-L-lysine-polyethylene glycol, which renders them resistant to cell adhesion. The production of these micropatterned substrates can be completed in <2 h. The third and final portion of the protocol describes the deposition of cells onto the micropatterned substrate.

  • We propose a novel mechanism of cell motility, which relies on the coupling of actin polymerization at the cell membrane to geometric confinement. We consider a polymerizing viscoelastic cytoskeletal gel confined in a narrow channel, and show analytically that spontaneous motion occurs. Interestingly, this does not require specific adhesion with the channel walls, and yields velocities potentially larger than the polymerization velocity. The contractile activity of myosin motors is not necessary to trigger motility in this mechanism, but is shown quantitatively to increase the velocity. Our model qualitatively accounts for recent experiments which show that cells without specific adhesion proteins are motile only in confined environments while they are unable to move on a flat surface, and could help in understanding the mechanisms of cell migration in more complex confined geometries such as living tissues.

  • Year of publication : 2008

  • Dendritic cells (DCs) sample peripheral tissues of the body in search of antigens to present to T cells. This requires two processes, antigen processing and cell motility, originally thought to occur independently. We found that the major histocompatibility complex II-associated invariant chain (Ii or CD74), a known regulator of antigen processing, negatively regulates DC motility in vivo. By using microfabricated channels to mimic the confined environment of peripheral tissues, we found that wild-type DCs alternate between high and low motility, whereas Ii-deficient cells moved in a faster and more uniform manner. The regulation of cell motility by Ii depended on the actin-based motor protein myosin II. Coupling antigen processing and cell motility may enable DCs to more efficiently detect and process antigens within a defined space.

  • Year of publication : 2007

  • The original micropatterning technique on gold, although very efficient, is not accessible to most biology labs and is not compatible with their techniques for image acquisition. Other solutions have been developed on silanized glass coverslips. These methods are still hardly accessible to biology labs and do not provide sufficient reproducibility to become incorporated in routine biological protocols. Here, we analyzed cell behavior on micro-patterns produced by various alternative techniques. Distinct cell types displayed different behavior on micropatterns, while some were easily constrained by the patterns others escaped or ripped off the patterned adhesion molecules. We report methods to overcome some of these limitations on glass coverslips and on plastic dishes which are compatible with our experimental biological applications. Finally, we present a new method based on UV crosslinking of adhesion proteins with benzophenone to easily and rapidly produce highly reproducible micropatterns without the use of a microfabricated elastomeric stamp.

  • Year of publication : 2006

  • Control of the establishment of cell polarity is an essential function in tissue morphogenesis and renewal that depends on spatial cues provided by the extracellular environment. The molecular role of cell-cell or cell-extracellular matrix (ECM) contacts on the establishment of cell polarity has been well characterized. It has been hypothesized that the geometry of the cell adhesive microenvironment was directing cell surface polarization and internal organization. To define how the extracellular environment affects cell polarity, we analyzed the organization of individual cells plated on defined micropatterned substrates imposing cells to spread on various combinations of adhesive and nonadhesive areas. The reproducible normalization effect on overall cell compartmentalization enabled quantification of the spatial organization of the actin network and associated proteins, the spatial distribution of microtubules, and the positioning of nucleus, centrosome, and Golgi apparatus. By using specific micropatterns and statistical analysis of cell compartment positions, we demonstrated that ECM geometry determines the orientation of cell polarity axes. The nucleus-centrosome orientations were reproducibly directed toward cell adhesive edges. The anisotropy of the cell cortex in response to the adhesive conditions did not affect the centrosome positioning at the cell centroid. Based on the quantification of microtubule plus end distribution we propose a working model that accounts for that observation. We conclude that, in addition to molecular composition and mechanical properties, ECM geometry plays a key role in developmental processes.

  • Year of publication : 2005

  • The cell division axis determines the future positions of daughter cells and is therefore critical for cell fate. The positioning of the division axis has been mostly studied in systems such as embryos or yeasts, in which cell shape is well defined. In these cases, cell shape anisotropy and cell polarity affect spindle orientation. It remains unclear whether cell geometry or cortical cues are determinants for spindle orientation in mammalian cultured cells. The cell environment is composed of an extracellular matrix (ECM), which is connected to the intracellular actin cytoskeleton via transmembrane proteins. We used micro-contact printing to control the spatial distribution of the ECM on the substrate and demonstrated that it has a role in determining the orientation of the division axis of HeLa cells. On the basis of our analysis of the average distributions of actin-binding proteins in interphase and mitosis, we propose that the ECM controls the location of actin dynamics at the membrane, and thus the segregation of cortical components in interphase. This segregation is further maintained on the cortex of mitotic cells and used for spindle orientation.

  • Cell shape and movements rely on complex biochemical pathways that regulate actin, microtubules, and substrate adhesions. Some of these pathways act through altering the cortex contractility. Here we examined cellular systems where contractility is enhanced by disassembly of the microtubules. We found that adherent cells, when detached from their substrate, developed a membrane bulge devoid of detectable actin and myosin. A constriction ring at the base of the bulge oscillated from one side of the cell to the other. The movement was accompanied by sequential redistribution of actin and myosin to the membrane. We observed this oscillatory behavior also in cell fragments of various sizes, providing a simplified, nucleus-free system for biophysical studies. Our observations suggest a mechanism based on active gel dynamics and inspired by symmetry breaking of actin gels growing around beads. The proposed mechanism for breakage of the actomyosin cortex may be used for cell polarization.

  • Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005 Jan 25) Directing cell migration with asymmetric micropatterns.

    Proceedings of the National Academy of Sciences of the United States of America, 102(4): 975-8

    This report shows that the direction of polarization of attached mammalian cells determines the direction in which they move. Surfaces micropatterned with appropriately functionalized self-assembled monolayers constrain individual cells to asymmetric geometries (for example, a teardrop); these geometries polarize the morphology of the cell. After electrochemical desorption of the self-assembled monolayers removes these constraints and allows the cells to move across the surface, they move toward their blunt ends.

  • Year of publication : 2002

  • The p160-Rho-associated coiled-coil-containing protein kinase (ROCK) is identified as a new centrosomal component. Using immunofluorescence with a variety of p160ROCK antibodies, immuno EM, and depletion with RNA interference, p160ROCK is principally bound to the mother centriole (MC) and an intercentriolar linker. Inhibition of p160ROCK provoked centrosome splitting in G1 with the MC, which is normally positioned at the cell center and shows little motion during G1, displaying wide excursions around the cell periphery, similar to its migration toward the midbody during cytokinesis. p160ROCK inhibition late after anaphase in mitosis triggered MC migration to the midbody followed by completion of cell division. Thus, p160ROCK is required for centrosome positioning and centrosome-dependent exit from mitosis.

  • In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration.

  • Year of publication : 2001

  • As an organelle coupling nuclear and cytoplasmic divisions, the centrosome is essential to mitotic fidelity, and its inheritance could be critical to understanding cell transformation. Investigating the behavior of the centrosome in living mitotic cells, we documented a transient and remarkable postanaphase repositioning of this organelle, which apparently controls the release of central microtubules from the midbody and the completion of cell division. We also observed that the absence of the centrosome leads to defects in cytokinesis. Together with recent results in yeasts, our data point to a conserved centrosome-dependent pathway that integrates spatial controls into the decision of completing cell division, which requires the repositioning of the centrosome organelle.

  • Year of publication : 2000

  • We have generated several stable cell lines expressing GFP-labeled centrin. This fusion protein becomes concentrated in the lumen of both centrioles, making them clearly visible in the living cell. Time-lapse fluorescence microscopy reveals that the centriole pair inherited after mitosis splits during or just after telophase. At this time the mother centriole remains near the cell center while the daughter migrates extensively throughout the cytoplasm. This differential behavior is not related to the presence of a nucleus because it is also observed in enucleated cells. The characteristic motions of the daughter centriole persist in the absence of microtubules (Mts). or actin, but are arrested when both Mts and actin filaments are disrupted. As the centrioles replicate at the G1/S transition the movements exhibited by the original daughter become progressively attenuated, and by the onset of mitosis its behavior is indistinguishable from that of the mother centriole. While both centrioles possess associated gamma-tubulin, and nucleate similar number of Mts in Mt repolymerization experiments. during G1 and S only the mother centriole is located at the focus of the Mt array. A model, based on differences in Mt anchoring and release by the mother and daughter centrioles, is proposed to explain these results.